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ABSTRACT

Partial matching is a comparison of two or more descriptions
that icentifies their similarities. Determining which of several
descriptions is most similar to one description of interest is
called the btest match problem. Partial and best matches uncerlie
several knowledge system functions, including: analogical
reasoning, inductive inference, rpredicate discovery, rattern-
directecd inference, semantic interpretation, anc speech and image
understanding. Because ©partial matching is btoth combinatorial
and ill-structured, admissible algorithms are elusive.
Economical solutions require very effective use of constraints
that, apparently, can be yprovided only bty globally organized
knowlecdge bases. Examples of such organizations are provided,

and promising avenues of research are proposed.
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INTRODUCTION: WHAT IS THE PARTIAL MATCHING PROBLEM?

A partial match is a comparison of two or more descriptions
that icentifies their similarities. Because typical descriptions
comprise symbolic property-~lists or propositional formulae, a
rartial match of two cescriptions includes three components: an
abstraction, consisting of all properties or propositions conmon
to both compared descriptions; and two residual terms,
representing the properties that are true of only one or the
other of the descriptions. If the two compared descriptions are
A ana B, the partial match of A and B, cenoted PM(A,B), is (A¥*B,
A-A*B, B~A¥B), where A¥B denotes the abstraction of A and B, anc
A~A*B ancd B~A*B denote the properties of A and B, respectively,
that are not containec in A*B. 1In other papers, partial .matching

has been variously referred to as interference matching,
[

generalization or correspondence mapping (9, 1C, 14, 15, 37, 4C

The premise of this paper is that the partial matching

rroblem is of fundamental importance for rpattern~directed
inference anc other knowledge~based activities. While some
well-structurec prroblems nay be solvable bty conventional

algorithmic methods, it appears that the majority of complex
problems cannot te solvec with a small set of predefined,
prattern~matching rules that are applied in an all=-or-none
fashion, exactly as coded. Just as laws must be flexibly
interpretec to regulate complex social interactions in reasonatle

ways, so is it true in systems employing 1large amounts of
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knowledge to complex problems that each element of knowlecge
shoule influence the outcomes of numerous decisions without

dominating any. In such systems, many diverse sources of

influence must be ©rpooled to identify the best or most strongly

ingicated course of action at each moment in time. Partial
matching and best matching are the mechanisms for accomplishing

this control.

In addition to its role in identifying the commonalities anc
differences of comparable situations, rpartial matching can te
interpretec in two other ways. The seconc role of rpartial
matching is to ascertain how well an otserved event -satisfies the
prescribed constraints of an ideal or prototypic situational
description. Identifying the best match tetween the description
of an observed event and alternative rprototyres enatles the
current situation to be recognized as an instance or special case
of one of the prototypes. Those relationships shared by both
descriptions are the constraints of the rprototype that the
observec event satisifies. Any residual properties of the
prototype are unsatisfied constraints. Classifying an event
according to its best match among alternative y(rototyres is
tantamount to pattern recognition by constraint satisfaction (Cf.

(1.

The third role of partial matching is similar to constraint

satisfaction. In ¢this case, too, a description of data is

compared with descriptions calleda templates, case frames,
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chemata or frames. These frames are usually hierarchically
organized, empirical or conceptual descriptions of observatle
phenomena. In short, frames constitute a system’s knowledge of
its world. Wen the best matching frames are ascertained, the
data are interpreted by imposing the frame structure wupon them.
For example, 1in a speech wunderstanding task the data might

consist of an array of hypthesized worcs, and the templates would

te empirical phrase structures of the language. The btest-matched
templates determine how the woras should be parsed anc
semantically interpretec. As a general rule, it appears that

semantic interpretation is best conceivec as the mapping between
current data ana previously inferred schemata. Because the
superficial asgpects of most observec situations ciffer
substantially from all previously encounterec ones, semantic

interpretation is fundamentally a protlem of partial matching.

In the next section, several applications of partial and
test matches are resented to convey the generality and
difficulty of the partial matching protlem. Subsequently, a
criterion for the admissibility of partial matching algorithms is
discussed which, though simple and reasonatle, is difficult to
realize. In the last sections, the principal features of the
partial matching problem are discussed, and some promising

approaches towara its solution are proposea.

SOME APPLICATIONS OF PARTIAL MATCHING
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In this section, several applications are triefly discussed
to 1illustrate the generality, importance, and cifficulty of the
partial and best match problems. The applications considered
include analogical reasoning, semantic interpretation, inductive
inference, predicate discovery, pattern-~cirectec inference, anc
speech and image uncderstanding. In each case, the central problem
is finaing a btest match between two data descriptions or between
a data description anc existing knowledge. This nearly always

entails searches of exponential problem spaces.

Analogical Reasoning. While this category rproperly emtraces
numerous problems of widely varying specificity, the most well
studied is "A is £ Blas @ is Bo mbteh o Bl B2 - .. DnY As
several researchers have shown [6, 38], an effective program for
solving these problems is as follows:

(1) Compute the partial matches PM(A, B), PM(C, D1),
PM(C, Dn).
(2) Determine the test match btetween PM(A, B) and one of

PMEE, D) o e, o BM@E Dn). If the best match is
PM(C, Dk), Dk is the test solution to the problem.

Recall that PM(X, Y) comprises three terms, the abstraction X*Y

and the residuals of X and Y. Thus, the partial match between A

and B cefines a viewpoint for interpreting what changes were ¥

necessary to transform A intc B; i.e., the pair A~B induces a
transformation [A ~> B]. This transformation is implicit in the 1
structure PM(A, B) = (A*B, A-A*B, B~A¥B): A*B specifies which 4

properties of A were retained, A~A¥*B specifies which properties
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of A were deleted, ana B-A*¥B specifies which properties were

added to A by the transformation c¢f A into B.

The partial match tetween PM(A, B) and PM(C, Di) (for some
i) can be viewed as a comparison of two ordered lists anc is
defined as PM(PM(A, B), PM(C, Di)) = (((A*B)*(C*Di), (A-~A*B)*(C~
C*Di), (B~A*B)*(Di~C*¥Di)), R1, R2), where R?! and R2 are the
appropriate resicual terms. The atstraction of this partial
mateh congsists of three terms: (A¥B)*(C*¥Di) comprises all
properties common to all of the descriptions, A, B, C, and Di
(the partial matching operator # is associative); (A-A%*¥B)¥*((C~
C*¥Di) comprises all properties removed from A and @ in
transforming them to B and Di, respectively; and, similarly, (B~
A*B)*(Di-C¥Di) comprises all properties added to A and C in
transforming them to B and Di, respectively. Thus, the original
analogy problem is recducitble, through partial matching, to =a
question of choosing the one combination of common, deleted, and
added properties that is most persuasive or plausitble. Because
any answer to this question must rest on empirical or subjective
criteria, nothing of general validity can be added to this

analysis.

Another use of partial matching for analogical reasoning
occurs in Merlin [28]. In this system, any object can be
interpreted as a special case of another whenever their
gifferences do not outweigh their similarities. As an example,

suppose we wished to play baseball with only a bat and a tennis
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ball. In Merlin’s framework, the feasibility of playing shoula
be directly related to the reasonability of viewing a tennis ball
in the role of a baseball. Such a viewpcint can te achieved ¢ty
partial-matching their descriptions. Suppose tennis ball were
defined as a "bouncy, hollow, light, fuzzy, four~inch spheroid
that is forcefully hit in the game of tennis" anc a tasebtall were
defined as a "hard, solid, leather-covered, moderately heavy,
four~inch spheroia that is forcefully hit in the game of
baseball." In this case, the atbtstraction of the two descriptions
specifies that toth objects are four-~inch srheroids hit
forcefully in games. The resicduals, however, specify that
whereas the baseball is hard, solig, ieather-coverec, moderately
heavy and used in the game of baseball, the tennis ball is

bouncy, hollow, light, fuzzy and used in the game of tennis.

To decide if the tennis ball will suffice as a makeshift
baseball, these residuals must be reconciled. One simplifying
approach to reconciliation employs semantic categories. If
correspondences between pairs of residual rproperties can te
established so that each difference 1is interpretable as a
specific dimensional variation, the significance of the overall
difference can be cdecomposed and, thus, easily arpprehended and
evaluated. A hierarchical organization of the system’s knowledge
greatly facilitates such a decomposition. For example, the
agifference hollow~solid can be reconciled by interpreting it as a
variation on the dimension of "structure" or "coanstruction type."

As a result, a tennis ball can be viewed as a type of tasetall
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that is hollow (rather than solid), light (rather than moderately
heavy), fuzzy (rather than leather~covered), used in the game of
tennis (rather than baseball), and bouncy (rather than some
unspecified related property of a baseball). If these
aifferences c¢o not outweigh the similarities of the two, the

tennis ball will serve admirably.

Before leaving this example, consider the role of partial
matching anad resiauals in establishing the correspondence tetween
objects. First, the two objects  descriptions were obtained fron
a cictionary or semantic network. Second, the properties common
to toth were abstracted by intersecting their property-lists.
Third, the residuals were forced into possitle corresponding
value pairs by finding dimensions that embraced btoth values.
Note that, in general, reconciling the cifference between two
arbitrary values requires a recursive application of the partial
matching scheme. Finally, the best match maximizes the
similarities and wminimizes the differences (according to

exogenous criteria) between the compared descriptions.

Other sorts of analogical reasoning tasks can be formulated

easily. For example: (1) If I know a detailed procedure (ordered
operations on operands) to accomplish a specific function
establish particular relationships on the operands), how cdo I

mocdify the procedqure to accomplish similar objectives on
qualitatively aifferent orperands? Answer: try to find related

operations applicable to the new operands that perform similar

B T T B e
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functions. (2) If I want to persuade someone that X causes Y tut
don‘t have specific examples, what can I do? Answer: find an
example where X' caused Y  and X is to X" as Y is to Y'. Desrpite
the fact that such arguments are . not strictly logical, many
reople fina them persuasive when the’ underlying analogies are

plausible.

emantic Interpretation. The assignment of best-matchec

167]

frames as the semantic interpretation of vertal material was
rreviously mentioned. There is a second way in which rpartial
matching supports semantic interpretation. 1In this case, two or
more concepts sharing certain syntactic relationships stimulate
restrictec sorts of "spreading activation" searches of a semantic
network. When the searches emanating from the original concegpts
intersect, the connecting path defines the semantic
interpretation of the syntactic structure [24, 31]. For example,
a novel noun~noun rphrase encountered in a text, such as "lawn
mower ," can be semantically interpretes by finding the btest match
among the relationships that radiate from the two concepts "lawn"
and "mower" in a network emtodying dictionary definitions. In
Ehis example , the best such match entails the following

rararhrased interpretation: a "lawn mower" is a machine that cuts

grass or similar plants [24]. Sgreading activation, intersection
searches are now widely applied in computer science and
psychology. Their similarity to the search techniques employed

by Merlin is apparent. Regardles of the rparticular knowledge

1#]

representation adogpted, the essential function of these systems
E 3
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is to find the best match possible under the constraints imposed

by the current knowledge.

Incductive Inference. Several researchers have shown ¢that

ratterns, conecepts, and preduction rules ean. be inferred by
rartial-matching examples to discover the consistently repeatec,
hence presumably criterial, properties [3, 4, 8, 9, 1C, 14, 15,
18 g 35 STE SRR To illustrate, consider the following
examples of several classes:
Example 1: Tom anc¢ Jack are trothers. Jack is the father
of a btoy named Bill who is uncer 1C0. Both Tom and Jack
are in their fifties. Jack’s btrother is Bill’'s Uncle
Tom.
Example 2: Mary is the mother of twin sons, Bill and Jim.
Mary is in her forties, while the toys are toth 14. Mary
has two brothers who are the boys Uncles Tom anc Steve.
Example 3: Sue has no brothers or sisters. Her mother is
Jane, and Jane has has a trother named Fred. Fred is
Sue ‘s uncle.
Example 4: Fred was a brilliant Negro who 1livedé all of
his life dn & predominantly white, racist country.
Because he was powerless and intimidated, Fred was
humiliatingly subservient to the whites in his community.
Fred was an Uncle Tom.
Example 5: Because John, an aging, impoverishec Negro,
was humiliatingly subservient to Southern whites, the
young blacks in his town called him Uncle Tom.
These examples will support a numter of toth correct and
incorrect inferences that are equally plausitle. For example, if
Examples 1 and 2 are partial-matched, one inference is that

rarents are at least 40 years ola and children are 14 or younger.

However, the type of inference that 1 want to draw attention to
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here has to do with notions of "Uncle." By partial-matching
Examples 1 and 2, it is reasonable to infer that an uncle of x
is the brother of the parent of x. However, the best ©partial
match of these two examples would entail the stronger inference

that x's Uncle Tom is the brother of x’s parent, who is at 1least

forty, while x is no older than 14.

A valid inference of the concept of '"uncle" requires
rartial-watching all of Examples 1, 2 and 3, whereas a valia
inference of the concept of "Uncle Tom" requires comparing
Examples 4 and 5. This illustrates one of the perrplexing

provlems regarding the role of partial matching in inductive
inference. While it is possible to infer valid rules by partial-
matching enough examples to eliminate all irrelevant rproperties,
rartial matching 1is also necessary to determine which examples
illustrate the same concerpt. Knowing that Examples 4 and 5
should be compared to infer the meaning of "Uncle Tom," rather
than comparing Examples 1, 2, 4, ana 5, requires additional

knowledge.

Suppose a learning system were askecd to decicde, based only
on 1its knowledge of the five examples, if a certain 55-~year-old
Negro namea Sam could be considered an uncle. To answer, it
would necessarily seek similarities between the properties of Sam
and previous examples of uncles. If, 1instead of actually
retaining all examples, the system had only storec some

"sufficient" set of rules induced by partial-matching arbitrarily
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selected subsets of examples, its current classification would
have a goocd chance of being incorrect. Because most systems do,
in fact, attempt to store only a minimal set of rules that can
‘cover" the data [25, 35], they are prone to errors caused by
decisions, about what combinations of properties are important,
made before the properties of a test item are known. A system
that stores its examples and postpones inferencing until the item
to be classified is fully specified has a significantly reduced
probability of error. In the current example, such a system
would be guaranteed to have sufficient evidence to infer both
that: if Sam is the brother of a parent, he may be labeled an
uncle; and 1if he 1is subservient to whites, he may be an Uncle

Tom.

The important point to observe is that the properties of the

item to be classified, not the properties of the training data,

determine which inferences should te made. Otviously, then, many

inferences cannot be anticipatecd or generated until the problem

is fully specified. 1In short, optimal performance in inductive
inference requires a "wait~and-see'" approach. In actual
applications of the ©partial matching mechanism to rattern
classification, the improved rerformance of wait-~and-see

classifiers has repeatedly teen otserved (5, 11].

The general learning framework that revolves about partial
matching has teen applied to the induction of several kinds of

knowledge, including speech and image patterns (5, 9, 11, 35],

i
i
;.
i
;
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structured or relational concepts [3, 9, 10, 14, 15, 37, 38, 4C],

3

transformational grammar rules [9, 1C, 38], anc other [congition

|

~> action] productions [38].

|0

redicate Discovery. While the type of incuction discussec
in the previous section assumes the prior discovery anc encoding
of those properties needec to express a rule, partial matching
provides a basis for «aqiscovering new [predicates too. For
example, if a learner were exposed to the following sentences, it
woulc have a good basis for several interesting incuctions:

Example 1: Because John is so tall, it is difficult to

find clothes that fit him.

Example 2: Because Mary is so short, it is hard to get
clothes that can fit her.

Example 3: Because Joanne is so fat, it is impossitle to
get apparel that is the right size.

Example U4: Because Tom is so skinny, it is not rpossitle
to fincd clothes that are suitatble.
Using only superficial characteristies of the SErang
representations of these examples, the following common

abstraction woulc te procucec by partial-matching:
(Because u is so vy, it is w to x).

The corresponding residual values from the four examples

associated with each variabtle u, v, w and x are as follows:

(John, Mary, Joanne, Tom)

1<
-

(tall, short, fat, skinny)

<
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W: (¢gifficult, hard, impossitle, not possible)
X! (find clothes that fit him,
get clothes that can fit her,
get apparel that is the right size,
find clothes that are suitatle).
Thus, with only four examples anc¢ very 1little knowlecge,
reasonable inferences regarcing four apparent categories of

natural language coulc be generated. The four distinct values

associated with each of the variatles are apparently sutsets o

—

the possible domains of associated (unknown) rpredicates. For
example, John, Mary, Joanne and Tom are four of the possible
values of the attribute "name." If this attribute had already
been known to the system, rartial-matching of the examples woulc
have preservec the common '"name" attribute, and a slightly more

informative atstraction woulc have teen procduced, such as:

(Because the thing named u is so v, it is w to x
Thus, u, v, and w contribute to the discovery of the categories
of name, body shape attribtutes, anc expressions for "cifficult to
achieve". For the purposes of machine learning, knowlecge of
these interpretations per se is unnecessary. All that apparently

is necessary is to infer the existence and composition of such
categories (unary predicates), and this may be cone whenever
gifferent constants are correspondents in correctly rpartial-

matched descriptions.

Continuing with the previous example, it is also interesting

to compare the residuals associated with variatle x by a

i e e e A e
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recursive application of partial matching like that employec in
Merlin. As a result of recursive partial matches of the four
resicual x strings, the following sequence of inferences will be

produced:

(1) Infer the category FIND = {find, get}.
(2) Infer the category CLOTHES = {clothes, apparel}.
(3) Infer the category FIT = {fit him, ean fit her, is
the right size, are suitatle}.
Then the abstraction of the residuals of x is:

(FIND(a) CLOTHES(b) that FIT(ec)).

Notice that this abstraction is itself a canadidate for a new tyre
of ternary relation that, by definition, is true of any triple
(a, b, ¢) constituted from the categories FIND, CLOTHES, and FIT,
respectively. Any such triple is an instance of this general
template anc has the obvious interpretation. Such a template is

a plausible model of the natural language expression for finding

clothes that fit. 1In any case, a capacity exists ¢to identify
plausible syntactic categories and semantic templates ¢ty
rartial-matching even a small number of similar verbal strings.
This approach to predicate discovery has been successfully

applied to a number of restricted languages (9, 17, 36].

Pattern~directed inference. One of the concepts that has

captured the imagination of many computer scientists and

psychologists is that of frames, prototypes, templates, scripts




or schemata [2, 26]. Frames are supposedly knowledge units that

delineate the elements of physical or conceptual events anc
express the constraints by which they are relatec. Distinct
frames have been proposed for every ordinary physical object,
typical configurations of otjects, anc most observable rhenomena
(e.g., dining at a restaurant or shopping for food). While there
is prinma facie evidence supporting the theory that people have
such knowledge, there 1is 1little concrete understanding of how
this knowledge can be exploited to simplify reasoning processes.
What can be universally agreed upon is trivial: whenever a
situation is encountered where existing knowledge is applicatle,

that knowledge should be applied to constrain the rpos

(%]
[
—
et
n

interpretations attributed to observed phenomena.

In this framework, the key issues are how relevant knowleg
can be identified efficiently and applied effectively. Thus, for
the moment, it will be assumec that a frame exists for descriting
svery interesting pattern of relationships. Sugppose, for
example, that the number of frames relevant to image [processing
is about 100,000, including ones for familiar faces, buildings,
automobiles, buses,; bodies, trees, mountains, furniture, and
implements of various sorts. Now, suppose that someone presents
a photograph selectec randomly from & magazine and asks how
knowledge shoula be employed to assist in interpreting it.
Simply asserting that we shoula apprly whatever knowledge is

needed to resolve the a priori uncertainty atout the identity of

various ot jects and their interrelationships is not an answer,
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for this 1s presumed by the question. The question asks how the
relevant knowledge <can be identifiecd. Once again, the answer
aprears to be that the best-~matching frames should te chosen to
interpret .the data. 1In most cases, even test-matchec frames will

only be ©partially satisfied, Gtecause observec ot jects are

occluded or otherwise fail to conform perfectly to the
rreconceivec frame constraints. Once the btest-matched frames
have teen 1identified, their knowlecge can bte exploitec to

hypothesize anc test the apparently missing or erroneous data

constituents.

Because no frame, ty itself, can bte expected to give a
thorough account of the significant features of any normal,
reasonably complex scene, satisfactory interpretations will
normally require the integration of several partially matched
frames. Two ways of cdetermining the appropriate combination of
frames can te prorosec: (1) frames should te triec one-at-a~time,
and additional frames shoula be incorporatecd as needed to resolve
resicual or anomalous properties; (2) some 1identifying
characteristics of appropriate frames shoulad be discerned through
an analysis of global properties of the problem, and then frames
satisfying these dynamically determined c¢riteria should te
invokea. In the next subtsection some recent results of speech
and image understancing research are presented favoring the

second alternative.

understanding
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systems face the task of fincding the best-fitting interpretation
for a noisy, parametric time series. The parameters are acoustic
measurements and the interpretation is a hierarchical tree whose
root is a semantic template from the language ancé whose
intermecdiate levels represent phrases, words, syllatles, rhones,
and acoustic segments [16, 20]. An ‘nterpretation is constructec
by applying knowlecge of possible mappings between intermeciate
levels. In the Hearsay~11 system in particular, the
interpretation process occurs basically in two phases. PIrsE .
knowledge atout the acoustic realization of words is used to
hyprothesize, tottom~up, rplausitle words at various temporal
locations within an wutterance. For example, if the sentence
contains 1C words chosen from a 1C0C-worad vocabulary, atout 7 or
8 on the average are correctly hypothesizec. In addition,
approximately 2CC incorrect woras are hypothesized, and atout U4C

of these are actually ratec higher than valid word hypotheses.

In the secona phase, missing words are hypothesized and
rated and the entire sequence of words in the sentence is rparsed
and assigned an overall semantic intergpretation. The key protlem

in this phase is to generate anc rate the most plausitle, missing

woras. Even when the vocabtulary and grammar are highly
constrainec, the size of the search space for possitle
grammatical word sequences 1is extraordinarily large. In the

Hearsay~I1 system several approaches to this problem were tried,
ancé only one apgroach apparently cerived sufficient constraint,

by applying enough knowledge simultaneously, to succeed. The
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methoada usead was to rpartial-match the entire collection of
bottom-~up word hypotheses against all templates of the grammar,
in parallel, in the hope of finding one sequence of highly-rated
woras that was grammatical and most protably wvalid. If such a
sequence coulac be identified, the system predicted and rated its
plausiktle word extensions, iteratively, wuntil a complete

interpretation of the sentence was constructec.

Two knowlecdge sources were involved in computing the partial

match between the matrix of hypothesized worcés anc¢ the
grammatical case frames. These were WOSEQ [21], a worc sequence
hypothesizer, and PPARSE [12], a partial parser. In overview,

WOSEQ uses knowledge about the adjacency of words in the language
to form hypothetical worc sequences bty concatenating successive
language~acjacent and time~acjacent word hypotheses. It prunes
the search space further by terminating the concatenation process
for any sequence when the expected benefit is less than the cost,
sy when the increase in creaibility ottainable by
concatenating additional word hypotheses 1is insufficient to
warrant the attencdant multiplicative increase in the total number
of word sequences generated. Each of the most creditle worc
sequences identified by WOSEQ 1is then evaluated bty PPARSE to
determine whether it is actually grammatical, i.e., whether it is
a Subsequence of some sentence in the language. Each of these

tartial matching procedures is now explainecd in more cetail.

WOSEQ uses a precomputed bit matrix that specifies for each
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rossible word pair (u, v).whether the sequence u v can occur in a
sentence of the language. For the 10CC~wordé vocabulary, this
requires approximately 30K 36~tit words of memory. Given a

collection of ‘tbottom—up word hypotheses, WOSEQ selects a few of

Each seea 1s a one-~worc sequence, anc the following procecure is

applied repeatedly to all sequences until quiescence occurs:

(1) For each word sequence W, construct the sets P(W) and
S(w) of word hypotheses that can precede and succeed W.
P(W) contains all hypotheses that are both language-
aajacent and time~adjacent to the first worcé in W. The
set S(W) contains all hypotheses that are time and
language~adjacent to the last word of W.

2) For each w in P(W) evaluate the creditility of the
equence (w, W). This is an increasing function of the
redibility of w and W, an increasing function of the
total number of syllables spanned by (w, W), and a
decreasing function of the number of words in P(W). If
the creditility of the sequence (w, W) is greater than
that of W, add (w, W) to the set of hypothesized
sequences. For each worc w in S(W), similarly fprocess
the potential sequence (W, w).

a2l
<
c

When WOSEQ quiesces, it will have identifiec sequences of
rairwise~grammatical words that appear to be most creditle over
the entire set, both because they incorporate at least one of the

individually most credible bottom~up hypotheses and because they

satisfy a maximum number of low protability constraints. WOSEQ
is usually successful at its task, btecause it continually
increases the credibility of the objects it processes. It does

this by adducing contextual support in the form of numerous,
consistent, unlikely otservations. The algorithm is efficient

btecause the time and language-adjacency constraints are easily
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computed. In a later section of this paper, it is suggested that
easily computable, global attributes of the problem space may
provide a promising, general approach to the partial matching

problem.

The next step in the linguistic partial matching probtlem is
to test each word sequence for grammaticality. This requires a
parser capable of recognizing the grammaticality of any word
sequence, even if it is only a subsequence of the string
derivatbtle from a nonterminal. In Hearsay~I1T, this s
accomplished by a program PPARSE. PPARSE is a bottom~up, left-
to-right Kay~-type parser with the following modifications: Any
rewrite rule such as X -> A B can te applied, and the parse noce
X constructea, whenever the leftmost derivative of B in the rparse
tree is the first word of the sequence bteing partial-parsed.
Similarly, any rewrite like Y ~> C D can be applied whenever the
rightmost derivative of C is the last word of the sequence being
rartial-parsec. These are the only cases 1in which incomplete

tree structures are built.

WOSEQ and PPARSE succeeded at controlling the combinatorics
of the search rproblem, while a number of procduction systems
failed [16, 27], because hypotheses that satisfy many of WOSEQ's
constraints are 1likely to be wvalid. Furthermore, the truly
expensive operation in this partial natching, instantiating and

hypothesizing incomplete grammatical case frames, occurs only

when an incomplete nonterminal can appropriately cderive the first
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or last word of a sequence selectec by WOSEQ. Comparec to any
simplistic conception of how a frame system can operate to
hypothesize and then fill in partially instantiated frames, WOSEQ
and PPARSE constitute a significantly surerior sclution to the

best match problem.

The last example of partial matching to bte considerec is the
protlem of determining stereo disparity tetween two images that
are left and right-eye views of one scene. To resolve the
disparity between two images of this sort, it is necessary to
partial-match them to identify the corresponcing (same) objects
in each image. Once this is done, the lateral displacement or
cisparity between the two is a cue for the distance of the ot ject
from the viewer. The human visual system is capatle of resolving
such adisparity, even when there are no cdistinguishable objects in
either view (as in rancom-dot stereograms). Recently Marr and
Poggio [22] have shown how the necessary partial matching

computations can t

o

performed locally bty spatially distributed,
cooperative rrocesses. Their approach rests on the obtservation
that, while the cisparity tetween any two corresponding points is
initially wunknown, any hypothesis regarcing some particular
disparity value tbtetween two points in the two images implies
approximately the same disparity value btetween neighboring
points. By constructing a protlem representation in which every
prossible pair of corresponding points, with disparity -

influences the neightoring points with matching properties toward

correspondences under the same disparity, a cifference equation
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is constructed that can bte applied iteratively anc 1locally to
choose correspondences that maximize constraint satisfaction. A
solution in this algorithm is just a steady-state reachecd bty the

h

aifference equation.

This application of partial matching is particularlsy
interesting, because it shows how global features of the protlen
space, such as disparity and spatial position, can constrain the

search for the best mateh. The global communication

o |
=

constraint is accomplished by directly connecting neightoring

points whose hypothetical disparity values influence one another.

To develop a mechanism capable of this sort of information
sharing, a representation had to te discovered that clarifiec the
relationship between global data attritutes {(location and

disparity) and local computations involvec¢ in partial matching
(determining the grey~scale similarity of two potentially
corresponding points). The role of this integrated globtal-~local
problem representation is comparable to that rplayed by the
precomputed language=~adjacency matrix used by WOSEQ to
hypothesize word sequences 1in Hearsay-II. This suggests sone
interesting rproperties of the partial matching problem that are

pursued in the subtsequent sections.

PRINCIPAL PROPERTIES OF THE PARTIAL MATCHING PROBLEM

From the preceading illustrations, it is possible to identify

four principal characteristics of the partial matching protlem.
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In this section, these are briefly discussed.
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only be determined dynamically. In the large class
of protlems whe partial matching is necessary and
computationally expensive, the number of distinet partial matches
that can arise is virtually limitless. As a result, it is not
possible to predetermine all combinations of otservable
rroperties that may, at some time, most warrant some response. A
fortieri, it 1is not possible to rank order the potential
situations in terms of import or interest value. Rather, the
choice of which configurations of data deserve further processing
resources is determinable only as a result of dynamic partial

matching between the data in hand and the frames or templates

specifying known constraints.

Partial matching, as a general computational frotlem, is
intractatle. Because partial matching sutsumes the graph

monomorphism, the k~clique, and other NP-complete rproblems, the
amount of time apparently needed to solve worst-case problems is
at least exponential in the complexity of the structures teing
matched. It follows that if partial-matching is to be applied
successfully, problem complexity must be reduced. The principal
way in which such complexity reduction can be accomplished is by
choosing rich, high~order predicates as a basis for description.
As the grain of description is reduced towarc uniform, low-=level

predicates (e.g., simple graphs, retinal arrays of on=off

Lu ; T — . - d
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detectors, semantic primitives), the partial matching probtlerm

made inherently more complex and less feasitle.

nondeterministic. Thus
far i this paper the nondeterminism of partial matehing
algorithms has been neglected, primarily tecause one partial
match solution is usually test. Thus, while any program cesignec
for partial matching must incorporate logic that permits 1t to
rursue wmultiple solutions simultaneously, effective mechanisms

will quickly rprune poor alternatives from consiceration.

This point is of the utmost importance for wunderstanding why
simple approaches to rprattern-~cirectec inference or frame-
theoretic analysis of real cata are likely ¢to Fas i . Simgple
aprroaches will attempt ¢to hyrothesize all partial~matched
frames and then predict anc verify their missing
consbituents. In any reasocmably ecomplex comain, the best
interpretation of cata will ¢traverse a priori boundaries of

several low~orcer frames anc will only te apparent when multiple

levels of partial-matchec frames are integratec. The simple
approach entails extensive unwarrantec searching of many levels
of frames, Gtecause huncdreds of frames can bte consistent

withh at 1least some properties of the otserved data. The search
for a best cverall interpretation can be effective only df

many ¢properties of the a@ata, providing multiple sources of




25

constraints, are consicered LSimultaneously.

THE PARTIAL MATCH ADMISSIBILITY CRITERION

Any proposec algorithm for partial-matching two structures A
and B ought to satisfy the following criterion:

everything else helg

constant), the faster the partial match should be.
Ihis eriberiom 48 callec the partial match acmissibility
criterion. 1Its reasonableness and desirability are intuitively
apparent. Yet, even in the simplest applications of partial
matching, 26 is rarely achievable [33]. The cause is that
typical partial matching algorithms evaluate rproperties one-at-
a~time. For example, if we wish to find a document that has

keys (attritutes)

[Vie]

; h, and k, most procedures acecomplish this

14

by intersecting the inverted lists of cocun

[¢)]

nts associatec with

(

each of the three keys. Thus, it takes longer to fipe a
c¢ocument that matches 10 keys than to find one that matches 3,

aneé so ferth.

Avenues of approach toward realizing acdmissitle algorithms

are suggested by consicering partial matching as a search otlen

.,..
=3

in which each partial match corresponds to a state. The 1initial
state is representecd as a three-tuple, ((), A, F), where A is the
obtserved data representation (or query) ane F is a set of frames

againat which A can be compared. As tefore, the first conmponent

represents the abstraction or partial mateh thus far constructed,




e

the seconc component represents the residual of A with respect to
this abstraction, anad the third component represents the

resicuals of the frames vis—~a~vis the current abstraction.

By applying typical admissibility criteria of general

searches ([3C], it is apparent how one shoulc¢ move through this
search space. At each decision point in the algorithm, the most
promising partial solution shoulc bte extencec. The most

promising extension 1s the one yproviding the most complete
rartial match for the least expense. Here, expense is cefined as
the total computation required to arrive at any given state,
inclucding both the computation time spent cdeveloping the
particular partial match as well as the time spent constructing
collateral matches from expanded partial solutions on the same
rath. Thus, the best step at each point is the one which adduces
the most constraint for the least cost. Constraint in this case
is exactly definable as the reduction in the remaining
uncertainty regarding which frames of F are involvec in the test

match of A.

From this viewpoint, it appears that there is only one
interpretation of constraint. A transformation from one partial
matching state to another is constraining to the extent to which

it eliminates possitle elements of F from further consideration.

a test and its performance. Diagnosticity is a measure of the

ability of a test to rule out possibilities. Performance 1is a
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composite measure of the expected utility of a test, combining
its diagnosticity with its expected frequency of satisfiability
[81]. An optimal algorithm would apply, at each cdecision
EO1NngG, the most ciagnostic test that is satisfiatble.
Expected cost can be minimized by applying the tests with highest
rerformance values at each decision peint. Such an
approximation is important, tecause we know of no reasonatle way
to determine aynamically the most ciagnostic tests. Some avenues

of approach to these problems are suggested in the next section.

IMPLICATIONS FOR THE DESIGN OF KNOWLEDGE SYSTEMS

From this stucy of partial matching, four general
implications for the cesign of knowledge systems are drawn. FEach

of these is considered in turn.

Analyses should bte synthetic and dynamic. This criterion,

although souncing superficially like a suggestion for analysis-
by~synthesis, is ciametrically opposed to that approach. In
analysis-~by-synthesis [19], pratterns are interpretec by top-
cown methoas: one most likely, highest-level frame 1is selectec
arbitrarily to apply and, at each vpoint, unfillecd frames are
expanded downwara until they can fit (interpret) the data.
Because such search strategies are insensitive to properties of
the cata at hand, they will perform bacdly unless more constraint
is available from the top~cown structure of the frame syster

than from tests tased on diagnostic combinations of data ana




~28~

frames. To be synthetic means choosing tests to perform which,
in view of the properties exhititec bty the data, apply maximal
constraint. Knowledge systems designed along these 1lines would
employ a basic three-step cycle: (1) a small number of highest-
performance tests are applied to the best partial solutions
(initially, to the most credible data); (2) the most promising
matches are extended; and (3) the new test watches are
icentifiec for evaluation bty another set of highest-performance
tests. Note how this paracigm embtraces the WOSEQ~PPARSE

methoacology cescribecd earlier.

Descriptions should be rich and simple. To reduce the

o]
[92]

|

complexity of the search problem, descriptions should be as rich
and simple as possitle. This criterion implies that high~level
gescriptors are more desiratle than low~level ones. For exangple,
language processing systems representing knowlecge in terms of
lexemes are more efficient than those representing such knowlecge
in the form of equivalent graphs of semantic primitives [7]. One
rarticularly interesting aspect of Merlin 1is its wuse of
hierarchical descriptions permitting partial matching to be
verformed at the highest-~level of cescription possitle. Merlin's
rartial matcher descends into the depths of low=oOrdcer
descriptions only if matches of rich, high-level terms fail.
This criterion is actually a heuristic for achieving maximally
constraining tests for the least cost. 1Its actual effectivness

depends on the exact performance of tests at high and low levels;

in reasonatle protlem domains, however, the heuristic should te
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generally valia.
Scheduling of computational resources, btased on
giagnosticity or gperformance, shoul¢ bte considerec¢ a primitive

function in partial matching systems. Complex partial matching
systems must include mechanisms to insure that the most desirable
actions are executec first. Two rproperties of scheculers are
proposed. First, desirability should primarily reflect the
aiagnosticity of a pending action. Second, since scheduling is a
primitive operation, the costs of calculating desirabilities and
sorting the pending actions should be minimized. In Ehis
context, it 1is interesting to note that previous studies of
knowledge system scheduling [13] and conflict resolution in
production systems [23, 29] have completely neglected the concerpt

of diagnosticity.

resentations should integrate characteristics

o
i

ase with yproperties of the gdata to maximize
d in search. This criterion suggests that
one arpproach to improved ©performance in partial matching
is ¢€o cevelop globally organized representations whose

attributes can be exploited to recuce uncertainty during

rartial matching. The work of Marr and Poggio [22] on stereo

disparity 18 a good example of the wuse of such a glotally
organized problem srpace. Each locus of computation is
influencec by all relevant cooperative loci, and these are

efficiently identifiatle tecause they are in the same

a4
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neighborhood of the problem space. The essence of such spatial
organizations 1is an ability to reduce the number of computations
involved in similarity judgments. Similar tenefits were provided
to the partial matcher in Merlin as a result of its hierarchical

organization of knowledge.

In the future, representations should be sought which
support the wuse of proximity measures or directionality to
identify good partial matches. These could provide cheap and
constraining tests for a variety of tasks. For examrple,
semantic networks might be superimposec upon the type of
metric semantic spaces which humans apparently possess [32, 34,
39]. The value of such organizations would derive from an
improved capacity to detect that two objects are likely
correspondents (are highly similar) just because they are close
in the metric representational space. Moreover, such integrated
spatial and symbolic representations could significantly improve

intersection searches by favoring spread of activation in the

"area between two concepts of interest. Given the coordinates

of two nodes to be connected by a test path, preference shoulcd te

given to out-going 1links that are oriented in appropriate

directions.

Other types of organization should also te sought that can

facilitate computation of approximate similarity. For examgple,

in early experiments in rule induction, Hayes-Roth and

McDermott [15] showed how transformational grammar rules could

| y




'”lll-II-IlIllllIl-!IlI!llHl-H-H--ll!!l-'-Il'-!!IIl-I-I-lﬂﬂlﬂurf

3l

ke inferrea by partial-matching before~and-after examples.
Their program employed no knowledge about either the structure

of productions or sentences. By incorporating rfproperties of

these structures as attributes of the representations, Vere was
able to reduce the computation time by two orders of magnitude
[(338]. The organizing properties he exploited included a three-
rart decomposition of each production, corresponding to the
three components of the partial match of the tefore and after
rarts of each example, and a hierarchical regpresentation of
sentences. The additional constraints provided by these global
attributes of problem organization greatly simplify this

particular partial matching problem.

CONCLUSIONS

I have triea to show in this paper that partial matching

is central to many interesting functions of knowledge systems.
A few years ago, the foremost problem of knowlege system
design was how knowledge should be represented. While knowlecge
representations are continually improving, many good frameworks
have already bteen developed. Since pattern~directed function
invocation is obviously desirable for many applications of these
knowledge systems, attention has recently focused upon good
methocs to invoke appropriate knowledge units. Within the
framework of all-or-none knowledge application, the major torpics
of interest concern matters of efficiency, such as developing

me thoas for common subexpression elimination, efficient
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techniques for all-or-none pattern matching, ana strategies
for conflict resolution. While these are surely important
consicerations in implementing systems for simple or well-
structured tasks, the most diffiecult problem arising in wvery
large ancd flexible knowlecge systems is to determine, as
quickly as possitle, the most useful knowlecge for the task
at hanc. Because many diverse elements of knowlecge may
te weakly contributory to an overall solution, new ways of
organizing computation must bte cevelopec to prevent intractatle,
combinatorial searches. In the future, a major shift in
attention can te anticipated towarc the deceptively
easily statea but funcamental question: How shoulc partial and

best matches be computed?

et v gt 3
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